Модуль ВІ СОNNECT МF01

Назначение устройства

Модуль BI CONNECT MF01 системы BITREK CONNECT является считывателем карт стандарта MIFARE Classic и предназначен для идентификации личности, фиксирования рабочих смен, контроля заправок горючего и т.д. Полученный модулем номер карты и ее статус транслируется в шину CONNECT-BUS и может быть использован другими модулями системы BITREK CONNECT.

Комплект поставки

Модуль BI CONNECT MF01 системы BITREK CONNECT поставляется в следующей комплектации:

- Модуль ВІ СОNNECT MF01 1 шт;
- Технический паспорт 1 шт;
- Гарантийный талон 1 шт;
- Упаковочная коробка 1 шт.

Технические характеристики устройства

Технические характеристики устройства представлены в таблице 1.

Таблица 1. Технические характеристики устройства

N⁰	Параметры	Характеристики
1	Напряжение питания	12/24 B
2	Ток потребления (12 В)	30 мА
3	Интерфейс подключения	RS-485, CAN (CONNECT BUS)
4	Рабочая частота	13,56 МГц
5	Тип бесконтактных карт	MIFARE Classic
6	Максимальное количество сохраняемых в памяти карт	1 млн.
7	Диапазон эксплуатационных температур	от -30 °С до +80 °С
8	Допустимая влажность	80% ± 15%
9	Габаритные размеры (Ш × Д × В)	85 × 105 × 30 мм
10	Масса нетто	300 гр.
11	Масса брутто	340 гр.
12	Класс защиты корпуса	IP67

Внешний вид и габаритные размеры устройства

3/9

Рис.1. Внешний вид и габаритные размеры

Назначение выводов

Назначение выводов модуля BI CONNECT MF01 представлено в таблице 2.

Таблица 2. Назначение выводов у	/стройства
---------------------------------	------------

V	и₂ Наименование Тип си контакта Тип си	ıгнала Цвет прово,	ца Назначение
1	L Vin Пита	ание Белый	«+» бортового питания (номинальное напряжение 12 В или 24 В)
2	SND Пита	ание Серый	Общий провод (масса)
3	в САМ-Н Вход/	выход Розовый	Сигнал «CAN-H» интерфейса CAN (CONNECT BUS)
4	L CAN-L Вход/	выход Коричневый	и Сигнал «CAN-L» интерфейса CAN (CONNECT BUS)

N⁰	Наименование контакта	Тип сигнала	Цвет провода	Назначение
5	«A» RS-485	Вход/выход	Жёлтый	Сигнал «А» интерфейса RS-485
6	«B» RS-485	Вход/выход	Зелёный	Сигнал «В» интерфейса RS-485

Описание органов индикации

На передней панели модуля размещен световой индикатор, который отображает текущее состояние устройства.

Таблица 3. Световая индикация устройства

Цвет индикатора	Описание
Красный	На устройство подано питание. Поднесённая карта не распознана
Жёлтый	К устройству поднесена не авторизированная карта
Жёлтый мигающий	К устройству поднесено 2 карты одновременно
Зелёный	К устройству поднесена авторизированная карта

Алгоритм работы модуля

Модуль BI CONNECT MF01 системы BITREK CONNECT совместим с картами типа MIFARE.

Алгоритм работы будет зависеть от выбранного режима работы устройства (ID_Conf 0300).

Режим работы «Ключ чтения карты» (используется по умолчанию).

При получении номера поднесённой карты, модуль выполняет его поиск в памяти. Если номер полученной карты найден в памяти, то модуль транслирует в шину CONNECT-BUS номер полученной карты и статус карты – «своя карта». Если код полученной карты не найден в памяти – модуль транслирует в шину код полученной карты и ее статус – «чужая карта».

Режим работы «Ключ не используется»

В данном режиме работы модуль не производит сверку номера поднесённой карты с записанными номерами в памяти и передаёт в шину CONNECT-BUS только уникальный UIDномер карты. При этом статус карты всегда транслируется как «чужая карта», а команды для добавления карт в память модуля игнорируются.

Переменные статуса и номера карты транслируются в одном PGN. Список всех транслируемых переменных представлен в Дополнении 1

Настройка модуля BI CONNECT MF01

Модуль BI CONNECT MF01 имеет ряд настраиваемых параметров, список которых представлен

в Дополнении 1. Для настройки модуля BI CONNECT MF01 используется модуль конфигуратора системы BITREK CONNECT, а так же ПО CONNECT Configurator. Порядок работы с модулем конфигуратора и ПО подробно описаны в «Руководстве по организации и настройке системы BITREK CONNECT».

Модуль позволяет хранить в памяти до 1 миллиона номеров карт. Для работы с памятью модуля используются команды, представленные в таблице 4.

Таблица 4. Список команд для работы с модулем BI CONNECT MF01

N⁰	Команда	Описание
1	setparam ####	Установить значение параметра по значению ID
2	getparam ####	Запросить значение параметра по его ID
3	saveparam	Сохранить параметры во FLASH
4	addekey	Добавление электронного ключа
5	matchekey	Поиск ключа в памяти с выдачей индекса
6	formatekey	Удаление из памяти всех номеров электронных ключей
7	clearekey	Удаление из памяти номера электронного ключа
8	getver	Запросить версию ПО устройства

Пояснения к таблице 4:

Установить значение параметра по значению ID/запросить значение параметра по его ID.

Стандартные команды для чтения и записи параметров устройства. Список всех настраиваемых параметров представлен в Дополнении 1.

Сохранить параметры во FLASH.

После каждого изменения настроек, модулю необходимо отправлять команду: saveparam

После получения этой команды модуль присылает ответ в виде: «*PARAM SAVED*» и сохраняет измененные параметры во FLASH памяти.

Добавление электронного ключа.

Пример команды: addekey XXXXXXXXX; , где: addekey – команда; XXXXXXXXX -ID электронного ключа, строго 10 символов.

В ответ отправляется результат сохранения с кодом результата. Возможны следующие варианты ответа:

«addekey: OK,» - ключ успешно сохранен в ячейку памяти; «addekey: MATCH» - обнаружено совпадение ключа в ячейке; «addekey: ERR,0» - сбой сохранения из-за переполнения памяти электронных ключей.

Поиск ключа в памяти.

Данная команда служит для поиска ключа в памяти устройства. Пример команды: *matchekey XXXXXXXXX*; , где:

matchekey – команда; *XXXXXXXXX –* ASCII-кодированный ключ.

В ответ отправляется результат поиска соответствия с кодом результата. Возможны следующие варианты ответа:

«matchekey: OK,0 >» – найдено соответствие; «matchekey: ERR,0>» – соответствий не найдено.

Удаление из памяти всех номеров электронных ключей.

Данная команда служит для удаления из памяти всех электронных ключей. Пример команды: formatekey; В ответ отправляется результат в формате: «formatekey: OK>» – команда выполнена успешно.

Удаление из памяти указанного номера ключа.

Данная команда служит для блокировки указанного номера ключа. Пример команды: *clearekey XXXXXXXXX*;

,где: *clearekey* – команда; *XXXXXXXX* - ASCII-кодированный ключ В ответ отправляется результат в формате: *«clearekey: ERR,0»* - ошибка при удалении указанного номера ключа; *«clearekey: OK,0»* - ключ с указанным номером заблокирован в памяти устройства.

Запросить версию ПО устройства.

Данная команда служит для получения строки с версией ПО устройства. Пример команды: getver; В ответ отправляется строка в виде: «VER: MF01 V1 0003 18»

Добавление электронных ключей в память устройства

Строка со значением электронной карты должна содержать строго 10 символов – цифры 0-9 или заглавные буквы А-F. Каждая пара символов кодирует один байт в ASCII представлении. Номер карты должен быть записан в шестнадцатеричной системе исчисления (HEX) с побайтной перестановкой, от младшего байта к старшему. Первым записывается младший байт электронной карты, вторым - старший. В паре символов первый символ – старший полубайт, второй – младший.

<u>Пример настройки:</u>

На карте нанесён её номер 8597874069. Прежде всего, этот номер необходимо перевести в HEX. После конвертации получается число 200792595.

Далее данное число необходимо записать в память модуля от старшего байта к младшему. Учитывая то, что длина ключа должна состоять строго из 10 символов, то недостающий символ заменяется нулём.

Команда будет выглядеть так: addekey 9525790002;

важно

Для генерации номера карты используется специальное программное обеспечение Mifare Writer. В данном приложении номер сгенерированного ключа уже конвертирован, т.е. необходимость побайтной перестановки отсутствует

Процедура записи карт MIFARE Classic

Запись информации на карты MIFARE производится при помощи устройства BI CONNECT MF01, программатора Connect Configurator и программного обеспечения «Mifare Writer 0.93».

Внешний вид окна программы представлен на Рис.2.

	-	_	_			
			Т		F	K
Адреса пристрою 4			C E E i		DNT:	20
Ключ первинної авторизації 📃	FF	FF	FF	FF	FF	FF
Новий ключ зчитування	11	11	11	11	11	11
Новий ключ запису	11	11	11	11	11	11
Блокування вільних секторів 🔲						
Ідентифікатор картки						
Згенерований ідентифікатор карти						
					_	
					Почати	1

Рис.2 Внешний вид ПО Mifare Writer

- Адреса пристрою адрес модуля MF01 на шине CONNECT-BUS;
- <u>Ключ первинної авторизації</u> если данный параметр не отмечен, то ключ чтения карты используется стандартный (FFFFFFFFF). Если ключ чтения карты был изначально

изменён, то он должен быть указан в этом поле;

- Новий ключ зчитування установка нового ключа для чтения карты;
- Новий ключа запису установка нового ключа для записи карты;
- <u>Блокування вільних секторів</u> блокировка свободных секторов памяти карты. Дальнейшая перезапись информации в эти сектора будет невозможна.
- <u>Ідентифікатор картки</u> обязательное поле. Произвольное число в диапазоне от 1 до 999999, которое необходимо указать. Используется в алгоритме генерации идентификатора карты;
- <u>Згенерований ідентифікатор карти</u> сгенерированный номер карты, побайтно переставлен. Для записи номера в память считывателя данный номер записывается слева направо, без необходимости побайтной перестановки.

После того как питание на модуль MF01 подано, он подключен к конфигуратору системы BITREK CONNECT и все поля в приложении заполнены, необходимо нажать кнопку «Почати» и приложить карту к считывателю. При успешном завершении процесса записи карты, в приложении Mifare Writer будет выведено соответствующее уведомление.

Список переменных, транслируемых в шину CONNECT-BUS

N⁰	Название параметра	Разрядность	PGN	Старт Бит	Бит Всего	Таймаут
1	Модель устройства	4	18F713	0	32	10
2	Версия ПО	4	18F713	32	32	10
3	Время работы модуля	4	18F712	0	32	10
4	Количество перезапусков модуля	4	18F712	32	32	10
5	Статус карты	1	18F701	0	8	5
6	Номер карты	8	18F701	16	40	5

Примечание:

Переменные «Статус RFID» могут принимать следующие значения:

- 01 карта не обнаружена;
- 03 карта обнаружена, но не авторизирована, статус «Чужая карта»;
- 07 карта обнаружена и авторизирована, статус «Своя карта».
- 11 в считыватель установлено 2 карты одновременно

Дополнение 1. Параметры устройства

N⁰	Название параметра	ID при настройке	Разрядность параметра	Назначение параметра Значен умолч					
	Общие								
1	CANSlaveAddr	0200	1 байт	Адрес устройства на шине CONNECTBUS	4				
2	RS485Addr	0201	1 байт	Адрес устройства на шине RS-485	9				
3	DeviceName	0510	1 байт	Полное имя устройства	MIFARE READER REV001				
	Периоды								

N⁰	Название параметра	ID при настройке	Разрядность параметра	Назначение параметра	Значение по умолчанию
4	CANSendPeriod	0700	2 байта	Период отправки основного пакета данных по CAN (мсек)	1001
5	CANWaitPeriod	CANWaitPeriod 0701 1 байт Период удержания (сек)			1
			Настройки МІ	FARE	
6	EkeyPrio	0300	1 байт	Приоритет ключа (0 – ключ чтения карты; 1 – ключ не используется)	0
7	EkeyRead	0920	6 байт	Ключ чтения карты	FFFFFFFFFFF
			Безопаснос	ТЬ	
8	DevicePIN	0910	1 байт	Терминальный пароль доступа к устройству	11111

From:

https://docs.bitrek.video/ - Bitrek Video Wiki

Permanent link: https://docs.bitrek.video/doku.php?id=ru:mf01

Last update: 2024/04/18 12:26