
Модуль RF02 системы BITREK CONNECT

Назначение устройства

Модуль RF02 системы Bitrek Connect предназначен для работы с RFID-считывателями электронных карт, работающих по интерфейсу RS-485 и использующих для передачи информации протокол «RCS SOVA». Модуль имеет энергонезависимую память, в которой могут храниться номера валидных карт. Полученный номер карты и статус ее валидности транслируется в шину Connect-Bus и может быть использован другими модулями системы Bitrek Connect.

Комплект поставки

Модуль RF02 системы Bitrek Connect поставляется в следующей комплектации:

- Модуль RF02 1 шт;
- Технический паспорт 1 шт;
- Гарантийный талон 1 шт;
- Упаковочная коробка 1 шт.
- Кабель MicroFit 4-pin 1 шт.
- Кабель MicroFit 6-pin 1 шт.

• Резиновый уплотнитель - 3 шт.

Технические характеристики устройства

Технические характеристики устройства представлены в таблице 1.

Таблица 1. Технические характеристики устройства

Nº	Параметры	Характеристики
1	Напряжение питания	от 9 В до 36 В
2	Ток потребления	(12 В) 20 мА
3	Интерфейс подключения RFID- считывателей	RS-485
4	Максимальное количество RFID-считывателей	4
5	Протокол обмена данными с RFID-считывателями	RCS SOVA
6	Максимальное количество сохраняемых в памяти карт	4000
7	Диапазон эксплуатационных температур	от -30 °C до +80 °C
8	Допустимая влажность,	80% ± 15%
9	Габаритные размеры (Ш $ imes$ Д $ imes$ В)	78 × 83 × 30 мм
10	Масса	125 гр.
11	Класс защиты корпуса	IP44

Внешний вид и габаритные размеры устройства

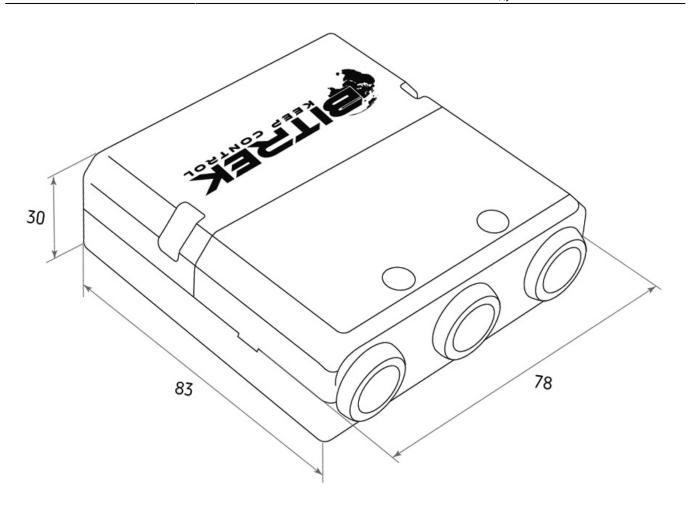


Рис.1. Внешний вид и габаритные размеры

Назначение выводов

Модуль RF02 оснащен тремя Micro-Fit разъёмами (Рис.2).

Рис.2. Внешний вид разъёмов Четырехконтактные разъёмы (Рис.3) – это разъёмы шины Connect-Bus, которые имеют выводы питания модуля и выводы сигнальных линий шины.

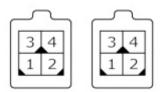


Рис.3. Разъёмы Connect-Bus №1 и №2

Цоколёвка разъёмов Connect-Bus представлена в таблице 2.

Таблица 2.Цоколевка разъёмов Connect-Bus №1 и №2

Nº	Наименование контакта	Тип сигнала	Назначение контакта
1	GND	Питание	Общий провод (масса)
2	CAN L	Вход/выход	Сигнал «CAN_L» шины CAN
3	+ Vin		«+» Бортового питания(номинальное напряжение 12 В или 24 В)
4	CAN H	Вход/выход	Сигнал «CAN_H» шины CAN

Шестиконтактный разъём (Рис.4) – это разъём для подключения RFID-считывателей. Имеет выводы питания считывателей и сигнальные линии RS-485.

Рис.4. Разъём для подключения внешних устройств

Цоколёвка разъёма для подключения RFID-считывателей представлена в таблице 3.

Таблица 3. Цоколёвка разъёма внешних устройств

Nº	Наименование контакта	Тип сигнала	Назначение контакта
1	GND	Питание	Общий провод (масса)
2	CAN H	Вход/выход	Сигнал «CAN_H» шины CAN
3	RS485 A	Вход/выход	Сигнал «А» RS485
4	+ Vin	Питание	Выход «+» бортового питания (для питания внешних устройств)
5	CAN L	Вход/выход	Сигнал «CAN_L» шины CAN
6	RS485 B	Вход/выход	Сигнал «В» RS485

Описание органов индикации

На передней панели модуля со стороны разъёмов размещен светодиод, который отображает текущее состояние устройства. Данный светодиод непрерывно светится, если подключение к шине Connect-Bus выполнено успешно.

Описание работы модуля

Модуль RF02 системы Bitrek Connect работает со считывателями RFID-карт, работающими по протоколу RCS SOVA. К одному модулю может быть подключено до четырех считывателей посредством интерфейса RS-485.

При получении номера RFID карты от одного из считывателей, модуль выполняет поиск полученного номера в памяти. Если номер полученной карты найден в памяти, то модуль транслирует его в шину Connect-Bus. При этом транслируется и статус валидности карты,

который указывает на то что данная карта валидна. Если код полученной карты не найден в памяти – модуль транслирует в шину номер полученной карты и ее статус – «чужая карта».

Параметр статуса карты может быть передан трекером системы Bitrek Connect в качестве отдельного датчика, либо использован другими модулями системы Bitrek Connect. Например, статус валидности полученной карты может быть использован модулем RL02 для управления подключенной к нему нагрузки.

Переменные статуса и номера карты транслируются в одном PGN. При этом каждому подключенному RFID-считывателю соответствует свой PGN. Список всех транслируемых переменных представлен в Дополнении 2.

Следует учитывать, что к одному модулю RF02 может быть подключено до 4-х RFID считывателей. При этом база хранения номеров карт в модуле общая для всех подключенных считывателей.

Настройка модуля RF02

Модуль RF02 имеет ряд настраиваемых параметров, список которых представлен в Дополнении 1. Для настройки модуля RF02 используется модуль конфигуратора системы Bitrek Connect, а так же ПО Connect Configurator. Порядок работы с модулем конфигуратора и ПО подробно описаны в «Руководстве по организации и настройке системы Bitrek Connect».

Основные параметры, которые требуется настроить для работы модуля, следующие:

- 1. Сетевой адрес модуля RF02 на шине Bitrek Connect. Адрес должен быть уникальным чтобы не допустить коллизий на шине.
- 2. Разрешение опроса подключенного RFID считывателя должно быть включено.
- 3. Сетевой адрес подключенного считывателя на шине RS-485 должен совпадать с адресом считывателя.

При работе следует выбрать один из двух режимов работы: с длинной данных, равной 5 байт, или 4 байта. Данная настройка определяется значением параметра 0201. По умолчанию значение данного параметра 0, что соответствует режиму работы с картами длинной 5 байт.

В случае работы с полным ключем карты (5 байт) устройство транслирует с шину Connect-Bus полный номер карты.

В случае работы в режиме 4-х байт, устройство будет транслировать номер карты без учета первого. Полученный номер в этом режиме в большинстве случаев будет соответствовать номеру, нанесенному на RFID карте.

Модуль позволяет хранить в памяти до 4096 номеров карт. Для работы с памятью модуля используются команды, представленные в таблице 4.

Таблица 4. Список команд для работы с модулем RF02

Nº	Команда	Описание
1	setparam ####	Установить значение параметра по значению ID
2	getparam ####	Запросить значение параметра по его ID
3	saveparam	Сохранить параметры во FLASH
4	addekey	Добавление электронного ключа
5	getekey	Получение электронного ключа по индексу
6	matchekey	Поиск ключа в памяти с выдачей индекса
7	formatekey	Удаление из памяти всех номеров электронных ключей
8	clearekey	Удаление номера электронного ключа из памяти
9	getver	Запросить версию ПО устройства

Пояснения к таблице 5:

Установить значение параметра по значению ID/запросить значение параметра по его ID.

Стандартные команды для чтения и записи параметров устройства. Список всех настраиваемых параметров представлен в Дополнении 1.

Сохранить параметры во FLASH.

После каждого изменения настроек, модулю необходимо отправлять команду: saveparam

После получения этой команды модуль присылает ответ в виде: «*PARAM SAVED*» и сохраняет измененные параметры во FLASH памяти.

Добавление электронного ключа.

Пример команды: addekey XXXXXXXX;

, где:

addekey - команда;

XXXXXXXXX -ID электронного ключа, строго 10 символов.

В ответ отправляется результат сохранения с кодом результата. Возможны следующие варианты ответа:

«addekey: OK,XXXX» - ключ успешно сохранен в ячейку с индексом XXXX;

«addekey: MATCH,XXXX» - обнаружено совпадение ключа в ячейке с индексом XXXX;

«addekey: ERR,0» - сбой сохранения из-за переполнения памяти электронных ключей.

Получение электронного ключа по индексу.

Данная команда служит для считывания из памяти устройства ID электронного ключа по его индексу.

Пример команды: getekey XXXX;

, где:

getekey - команда;

XXXX - индекс ключа.

В ответ отправляется результат с ключом или кодом результата. Возможны следующие варианты ответа:

«getekey: XXXX,YYYYYYYYY» - в ячейке записан ASCII-кодированный ключ;

«getekey: XXXX,EMPTY» - указанная ячейка пуста;

«getekey: XXXXX,UNFORMATED» - сбой форматирования данного ключа.

Поиск ключа в памяти с выдачей индекса.

Данная команда служит для поиска ключа в памяти устройства. При совпадении ключа выдается индекс ячейки с сохраненным ключом.

Пример команды:

matchekey XXXXXXXXX;

, где:

matchekey - команда;

XXXXXXXXX - ASCII-кодированный ключ.

В ответ отправляется результат поиска соответствия с кодом результата.

Возможны следующие варианты ответа:

«matchekey: OK, YYYY>» - найдено соответствие в ячейке с индексом YYYY;

«matchekey: ERR>» - соответствий не найдено.

Удаление из памяти всех номеров электронных ключей.

Данная команда служит для удаления из памяти всех электронных ключей.

Пример команды:

formatekey;

В ответ отправляется результат в формате:

«formatekey: OK>» - команда выполнена успешно.

Блокирование в памяти указанного номера ключа.

Данная команда служит для блокировки указанного номера ключа.

Пример команды:

clearekey XXXXXXXXX;

,где:

clearekey - команда;

XXXXXXXXX - ASCII-кодированный ключ

В ответ отправляется результат в формате:

«clearekey: ERR,0» - ошибка при удалении указанного номера ключа;

«clearekey: OK,0» - ключ с указанным номером заблокирован в памяти устройства.

Следует учитывать, что блокирование ключа в памяти не позволяет воспользоваться данным ключем как валидным, однако не очищает занятое в памяти место данным ключем. В случае, если нужно заново воспользоваться заблокированным ключем, его следует добавить используя команду addekey. Добавленный заново ключ займет новую ячейку памяти устройства.

Запросить версию ПО устройства.

Данная команда служит для получения строки с версией ПО устройства.

Пример команды:

getver;

В ответ отправляется строка в виде:

«RF02 VER. 1.27»

Добавление электронных ключей

Строка со значением электронной карты должна содержать строго 10 символов – цифры 0-9 или заглавные буквы А-F. Каждая пара символов кодирует один байт в ASCII представлении.

Номер карты должен быть записан в шестнадцатеричной системе исчисления (HEX) с побайтной перестановкой, от младшего байта к старшему. Первым записывается младший байт электронной карты, вторым - старший. В паре символов первый символ - старший полубайт, второй – младший.

Пример настройки:

На карте нанесён её номер 8597874069. Прежде всего, этот номер необходимо перевести в НЕХ. После конвертации получается число 200792595.

Далее данное число необходимо записать в память модуля от старшего байта к младшему. Учитывая то, что длина ключа должна состоять строго из 10 символов, то недостающий символ заменяется нулём.

Команда будет выглядеть так: *addekey 9525790002;*

Дополнение 1. Параметры устройства

Nº	Название параметра	ID при настройке	Разрядность параметра	Назначение параметра	Значение по умолчанию
1	CANSlaveAddr	0200	1 байт	Адрес устройства на шине Connect- Bus	1
2	DevicePIN	0400	4 байта	Пароль доступа к устройству	11111
3	SturtupNum	0401	4 байта	Количество запусков устройства	0
4	Sova1Ena	0261	1 байт	Разрешение опроса устройства 1	1
5	Sova2Ena	0262	1 байт	Разрешение опроса устройства 2	1
6	Sova3Ena	0263	1 байт	Разрешение опроса устройства 3	1
7	Sova4Ena	0264	1 байт	Разрешение опроса устройства 4	1
8	AddrSova1	0211	2 байта	Адрес устройства 1 на шине RS-485	1
9	AddrSova2	0212	2 байта	Адрес устройства 2 на шине RS-485	2

Nº	Название параметра	ID при настройке	Разрядность параметра	Назначение параметра	Значение по умолчанию	
10	AddrSova3	0213	2 байта	Адрес устройства 3 на шине RS-485	3	
11	AddrSova4	0214	2 байта	Адрес устройства 4 на шине RS-485	4	
12	GetPeriodSova1	0221	2 байта	Период опроса устройства 1	100	
13	GetPeriodSova2	0222	2 байта	Период опроса устройства 2	100	
14	GetPeriodSova3	0223	2 байта	Период опроса устройства 3	100	
15	GetPeriodSova4	0224	2 байта	Период опроса устройства 4	100	
16	SendPeriodSova1	0231	2 байта	Период отправки данных устройства 1 в шину Connect-Bus	10	
17	SendPeriodSova2	0232	2 байта	Период отправки данных устройства 2 в шину Connect-Bus	10	
18	SendPeriodSova3	0233	2 байта	Период отправки данных устройства 3 в шину Connect-Bus	10	
19	SendPeriodSova4	0234	2 байта	Период отправки данных устройства 4 в шину Connect-Bus	10	
20	SovaNumSize	0201	2 байт	Выбор длины данных при работе с картами	0 (5 байт)	

Дополнение 2. Список переменных транслируемых в шину Connect- Bus

Nº	Название параметра	Разрядность	PGN	Старт Бит	Бит Всего	Таймаут
1	Модель устройства	4	18F713	0	32	10
2	Версия ПО	4	18F713	32	32	10
3	Время работы модуля	4	18F712	0	32	10
4	Количество перезапусков модуля	4	18F712	32	32	10
5	Статус RFID 1	2	18F701	0	16	5
6	Статус RFID 2	2	18F702	0	16	5
7	Статус RFID 3	2	18F703	0	16	5
8	Статус RFID 4	2	18F704	0	16	5
9	Номер карты RFID 1	8	18F701	16	40	5
10	Номер карты RFID 2	8	18F702	16	40	5
11	Номер карты RFID 3	8	18F703	16	40	5
12	Номер карты RFID 4	8	18F704	16	40	5

Примечание:

Переменные «Статус RFID» могут принимать следующие значения:

- 01 карта не обнаружена;
- 03 карта обнаружена, но не авторизирована, статус «Чужая карта»;
- 07 карта обнаружена и авторизирована, статус «Своя карта».

From:

https://docs.bitrek.video/ - Bitrek Video Wiki

Permanent link:

https://docs.bitrek.video/doku.php?id=ru:rf02

Last update: 2025/08/31 23:17