
Модуль EX03 системы BITREK CONNECT

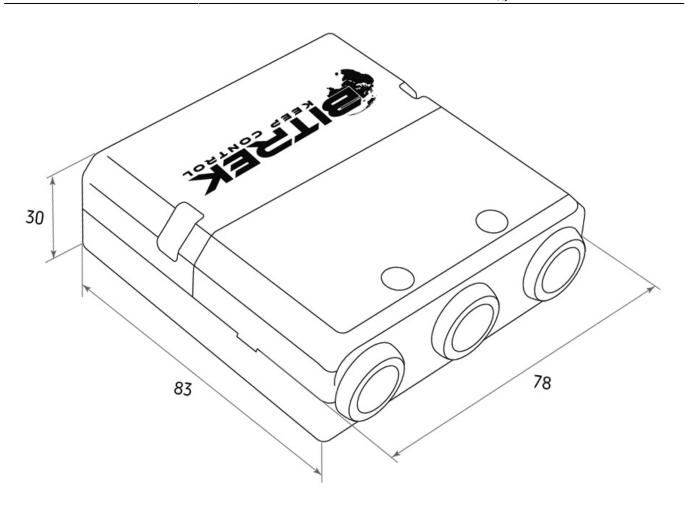
Назначение устройства

Модуль EX03 системы Bitrek Connect предназначен для работы с различными внешними датчиками, имеющими аналоговые и дискретные выходы. Полученные с датчиков данные обрабатываются и транслируются модулем в шину Connect-Bus.

Комплект поставки

Модуль EX03 системы Bitrek Connect поставляется в следующей комплектации:

- Модуль ЕХОЗ 1 шт;
- Технический паспорт 1 шт;
- Гарантийный талон 1 шт;
- Упаковочная коробка 1 шт;
- Кабель Micro Fit 4-pin 1 шт;
- Кабель Micro Fit 16-pin 1 шт;
- Резиновый уплотнитель 3 шт.


Технические характеристики устройства

Технические характеристики устройства представлены в таблице.

Таблица 1. Технические характеристики устройства

Nº	Параметры	Характеристики
1	Напряжение питания	от 9 В до 36 В
2	Ток потребления	40 мА
3	Количество аналоговых входов	3 шт
4	Количество дискретных входов с активным «0»	4 шт
5	Количество дискретных входов с активной «1»	4 шт
6	Диапазон входного напряжения аналоговых входов	От 0 В до 24 В
7	Диапазон входного напряжения дискретных входов	От 0 В до 30 В
8	Максимально допустимая частота входящего сигнала дискретных входов	20 Гц
9	Максимально допустимая частота входящего сигнала высокочастотных дискретных входов	10 кГц
10	Диапазон эксплуатационных температур	От -30 °C до +80°C
11	Допустимая влажность	80 ± 15 %
12	Габаритные размеры (Ш $ imes$ Д $ imes$ В)	78 × 83 × 30 мм
13	Масса	140 г
14	Класс защиты корпуса	IP44

Внешний вид и габаритные размеры устройства

Назначение выводов

Модуль EX03 оснащен тремя Micro-Fit разъёмами. Это – два 4-рin разъема для подключения шины Connect-Bus, и один 16-рin разъем для подключения внешних датчиков.

Четырехконтактные разъёмы (Рис.2) – это разъёмы шины Connect-Bus, которые имеют выводы питания модуля и выводы сигнальных линий шины.

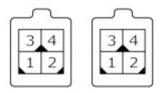


Рис.2. Разъёмы Connect-Bus №1 и №2

Цоколёвка разъёмов Connect-Bus представлена в таблице 2.

Таблица 2.Цоколевка разъёмов Connect-Bus №1 и №2

∣Nº	Наименование контакта	Тип сигнала	Назначение контакта
-----	--------------------------	-------------	---------------------

Nº	Наименование контакта	Тип сигнала	Назначение контакта
1	GND	Питание	Общий провод (масса)
2	CAN L	Вход/выход	Сигнал «CAN_L» шины CAN
3	+ Vin		«+» Бортового питания(номинальное напряжение 12 В или 24 В)
4	CAN H	Вход/выход	Сигнал «CAN_H» шины CAN

Шестнадцатиконтактный разъём (Рис.3) - это разъём для подключения внешних датчиков.

Рис.3. Разъём для подключения внешних датчиков.

Цоколёвка разъёма для подключения внешних датчиков представлена в таблице 3.

Таблица 3. Цоколёвка разъёма для подключения внешних датчиков

Номер контакта	Назначение контакта
1	Аналоговый вход №1
2	Аналоговый вход №3
3	Дискретный вход d_High1 (10 кГц)
4	Дискретный вход d_High3 (20 Гц)
5	Дискретный вход d_Low1 (10 кГц)
6	Дискретный вход d_Low3 (20 Гц)
7	Резерв
8	Резерв
9	Минус питания (GND)
10	Аналоговый вход №2
11	Дискретный вход d_High2 (10 кГц)
12	Дискретный вход d_High4 (20 Гц)
13	Дискретный вход d_Low2 (10 кГц)
14	Дискретный вход d_Low4 (20 Гц)
15	Резерв
16	Резерв

Описание органов индикации

На передней панели модуля со стороны разъёмов размещен один **красный** светодиод, предназначенный для индикации состояния подключения модуля к шине Connect-Bus. В случае, если соединение активно, светодиод светится.

Описание работы модуля

Модуль EX03 системы Bitrek Connect имеет три аналоговых входа и восемь дискретных входов. Дискретные входы разделены на две группы: d High, которые переходят в активное состояние

при подаче «+» питания и d_Low, которые переходят в активное состояние при подаче «-» питания.

В свою очередь, каждая группа дискретных входов имеет 2 высокочастотных входа, способных обработать входящий сигнал частотой до 10 кГц и 2 стандартных входа, способных обработать входящий сигнал частотой до 20 Гц.

Описание входов дано в таблице 3 данного руководства.

Аналоговые входы способны измерить напряжение, подведенное к ним и передать его в шину Connect-Bus.

Дискретные входы обрабатывают сигналы, подведенные к ним и выдают в шину Connect-Bus следующую информацию:

- **текущее состояние входа.** Отображает текущее состояние входа активное (1) или не активное (0). Такой тип информации может использоваться для контроля сигнала зажигания, тревожных кнопок, различных концевых выключателей и т.д.
- триггер входа. Триггер имеет два устойчивых состояния включен и выключен.
- **частотный вход.** Отображает значение частоты сигнала, подведенного ко входу. Может быть использован для контроля оборотов двигателя, или для подключения частотных ДУТ.
- накопительный счетчик. Отображает информацию о количестве импульсов, поданных на вход. Данный счетчик накопительный с функцией сохранения значений в энергонезависимую память модуля. Сохранение значений счетчика осуществляется 1 раз в секунду. Может использоваться для подключения импульсных расходомеров топлива.

Настройка модуля ЕХОЗ

Модуль EX03 имеет ряд настраиваемых параметров, список которых представлен в Дополнении 1.

Для настройки модуля используется модуль конфигуратора системы Bitrek Connect, а также ПО Connect Configurator. Порядок работы с модулем конфигуратора и ПО подробно описаны в документе «Общее руководство по организации и настройке системы Bitrek Connect».

Основные параметры настройки модуля:

- 1. Тип используемого фильтра пост обработки сигналов АЦП (параметр 0400). От выбранного значения данного параметра будет зависеть тип используемого фильтра АЦП (абсолютное значение, усредненное значение, медианная фильтрация).
- 2. Таймаут переключения дискретных входов (параметр 0401). От значения данного параметра зависит минимальная длина входящего импульса, которых сможет пропустить данный вход.

Работа модуля в режиме счетчика оборотов бочки бетоновоза

Модуль EX03 системы Bitrek Connect может работать в режиме счетчика оборотов бочки бетоновоза. В этом режиме модуль способен определить состояние движения бочки, направление ее движения (фиксация режимов смешивания и режима выгрузки), а также общее число оборотов, сделанных бочкой.

Для работы в таком режиме к модулю необходимо подключить два датчика положения бочки бетоновоза. Это могут быть индукционные датчики. Главное электрическое требование к датчикам – два устойчивых состояния – логический ноль и логическая единица на выходе.

Датчики размещаются на некотором расстоянии друг от друга. При вращении бочки в одну строну, в начале движения сработает первый датчик, затем – второй. В обратном направлении соответственно сначала второй датчик, затем первый. По этому принципу определяется направление движения бочки. Скорость движения бочки определяется величиной времени между срабатыванием двух датчиков.

Датчики подключаются к следующим входам:

Таблица 4. Подключение датчиков оборотов бочки бетоновоза

Номер датчика	Используемых вход	Номер контакта в 16-ріп разъеме			
1	Дискретный вход d_High1 (10 кГц)	3			
2	Дискретный вход d_High2 (10 кГц)	11			

Дополнение 1. Параметры устройства

Nº	Название параметра	ID при настройке	Разрядность параметра	Назначение параметра	Значение по умолчанию
1	CANSlaveAddr	0200	1 байт	Адрес устройства на шине Connect-Bus	9
2	DeviceName	0510	string	Полное имя устройства	-
3	ADC_Period	0181	1 байт	Период опроса каналов АЦП	33 (мс)
4	ADC_Digit_Period	0281	2 байта	Период отправки данных АЦП и дискретных входов	993 (мс)
5	Counter_Period	0381	2 байта	Период отправки счетчиков дискретных входов	1001 (мс)
6	ADC_Filt_Type	0400	1 байт	Фильтр пост обработки данных АЦП (0 - абсолютное значение; 1 - усредненное значение; 2 - медианная фильтрация)	2
7	Device_Identificator	0121	4 байта	Идентификатор устройства	0

Nº	Название параметра	ID при настройке	Разрядность параметра	Назначение параметра	Значение по умолчанию
8	Device_PIN	0910	2 байта	Пароль доступа к устройству	11111
9	DigIN_set_timeout	0401	1 байт	Таймаут переключения цифровых входов (X*100 мкс)	0
10	Frequency_tracking_per	0402	1 байт	Период слежения за появлением частоты (X*60 сек)	2
11	Actual_frequency_mult	0403	2 байта	Коэффициент умножения фактической частоты оборотов бочки миксера	60

Дополнение 2. Список переменных транслируемых в шину Connect-Bus

Nº	Название параметра	Разрядность	PGN	СтартБит	Бит Всего	Таймаут
1	Модель устройства	4	18F713	0	32	10
2	Версия ПО	4	18F713	32	32	10
3	Время работы модуля	4	18F712	0	32	10
4	Количество запусков модуля	4	18F712	32	32	10
5	Идентификатор устройства	4	18F711	0	32	5
6	Аналоговый вход №1	2	18F720	0	16	5
7	Аналоговый вход №2	2	18F720	16	16	5
8	Аналоговый вход №3	2	18F720	32	16	5
9	Триггер входа d_High1	1	18F720	48	1	5
10	Триггер входа d_High2	1	18F720	49	1	5
11	Триггер входа d_High3	1	18F720	50	1	5
12	Триггер входа d_High4	1	18F720	51	1	5
13	Триггер входа d_Low1	1	18F720	52	1	5
14	Триггер входа d_Low2	1	18F720	53	1	5
15	Триггер входа d_Low3	1	18F720	54	1	5
16	Триггер входа d_Low4	1	18F720	55	1	5
17	Текущее состояние входа d_High1	1	18F710	0	8	5
18	Текущее состояние входа d_High2	1	18F710	8	8	5
19	Текущее состояние входа d_High3	1	18F710	16	8	5
20	Текущее состояние входа d_High4	1	18F710	24	8	5
21	Текущее состояние входа d_Low1	1	18F710	32	8	5
22	Текущее состояние входа d_Low2	1	18F710	40	8	5
23	Текущее состояние входа d_Low3	1	18F710	48	8	5
24	Текущее состояние входа d_Low4	1	18F710	56	8	5
25	Частотный вход d_High1	2	18F730	0	16	5
26	Частотный вход d_High2	2	18F730	16	16	5
27	Частотный вход d_High3	2	18F730	32	16	5
28	Частотный вход d_High4	2	18F730	48	16	5

Nº	Название параметра	Разрядность	PGN	СтартБит	Бит Всего	Таймаут
29	Частотный вход d_Low1	2	18F740	0	16	5
30	Частотный вход d_Low2	2	18F740	16	16	5
31	Частотный вход d_Low3	2	18F740	32	16	5
32	Частотный вход d_Low4	2	18F740	48	16	5
33	Накопительный счетчик d_High1	4	18F741	0	32	5
34	Накопительный счетчик d_High2	4	18F741	32	32	5
35	Накопительный счетчик d_High3	4	18F742	0	32	5
36	Накопительный счетчик d_High4	4	18F742	32	32	5
37	Накопительный счетчик d_Low1	4	18F743	0	32	5
38	Накопительный счетчик d_Low2	4	18F743	32	32	5
39	Накопительный счетчик d_Low3	4	18F744	0	32	5
40	Накопительный счетчик d_Low4	4	18F744	32	32	5
41	Состояние движения бочки миксера*	1	18F750	0	8	10
42	Скорость вращения бочки миксера	2	18F750	16	16	10
43	Накопительный счетчик оборотов бочки миксера	4	18F750	32	32	10

^{*} Переменная автоматически определяет состояние бочки миксера:

- 0 неопределенное состояние
- 1 движение в одну сторону
- 2 движение в противоположную сторону

From:

https://docs.bitrek.video/ - Bitrek Video Wiki

Permanent link:

https://docs.bitrek.video/doku.php?id=ru:ex03

Last update: 2025/08/31 23:17